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I. INTRODUCTION

Autonomous stochastic resonance refers to the occurrence
of coherent behaviors such as rhythmic oscillations at an
optimal level of noise in a system that is quiescent without
noise. Unlike ordinary stochastic resonance in which the de-
tectability of a periodic input is maximized by an optimal
noise level, in autonomous stochastic resonance the coherent
oscillations emerge with the introduction of noise only �no
periodic input� into an otherwise nonoscillatory system. It
was first reported in a numerical study of a two-dimensional
autonomous system �1�, whose deterministic behavior is
characterized by two stable equilibria separated in its circular
phase space by two unstable equilibria. If the system is per-
turbed beyond the threshold distance between neighboring
stable equilibria, the system evolves from one to the other.
Similar noisy behavior has been observed in excitable sys-
tems, such as the FitzHugh-Nagumo �FHN� �2� and
Hodgkin-Huxley �HH� �3� models. There the deterministic
systems have a single stable equilibrium, but large “excited”
excursions occur for perturbations beyond a threshold. In �2�,
the term coherence resonance �CR� was introduced to em-
phasize the fact that relatively coherent oscillations occur at
moderate noise levels in such excitable systems. In all of
these settings higher noise levels increase the frequency of
transitions or excursions, providing the intuition behind a
phase plane analysis �4� and the relative first passage time �2�
used to explain the increased frequency of the noise-induced
coherent oscillations.

These studies have two important characteristics of CR in
common. First, the coherence of the dynamics, defined as �1�

� = hp���/�p�−1, �1�

reaches a maximum at an optimal level of noise. Here hp and
�� are the height and the width of the averaged spectrum
peak at frequency �p. Second, the frequency of the coherent
oscillations depends on the noise level. A large number of
studies of noise-induced synchrony in networks of coupled
excitable systems, including coupled integrate-and-fire mod-
els �5�, FHN models �6�, HH models �3�, and bursting mod-
els �7,8� also illustrate these characteristics of CR. Optimal
coherence at a finite noise level was explained by Wiesenfeld
�9� who revealed how the noise controls the structure of the

power spectrum. Similarly, �10� used logistic maps to explain
the peak values in the coherence measure.

These earlier results examined CR for oscillations com-
posed of transitions between steady equilibria, where the fre-
quency naturally increases with noise level. In other con-
texts, the relationship between frequency and noise may
vary. For parameter values that are close to a saddle-node
point in the periodic branch in the HH model �11�, noise
variation gives little or no change in the frequency of the
coherent oscillations. Instead noise apparently “shifts” the
bifurcation structure, yielding stable large amplitude oscilla-
tions associated with solution branches far from the Hopf
point. Similarly in a network of resonance integrate-and-fire
oscillators �8�, the noise induces synchronized burst firing in
a subthreshold regime, with the frequency of the network
oscillations determined by the intrinsic properties of the neu-
rons rather than the noise level. CR is also observed in tran-
sitions between steady state and oscillatory modes, �1�,
�12–17�. There the relationship between the resonance fre-
quency and the noise level depends on the model type. Al-
though all of the cases of CR cited above differ in certain
ways, they share the common feature that moderate levels of
noise can induce coherent oscillations in a system that is
nonoscillatory in the absence of noise. We shall use the term
CR to refer to all such phenomena. This includes the case
that we study in this paper, although the mechanism for CR
is not exactly the same as in the other studies cited above.

In this paper we focus on CR via the canonical model for
a normal form near a Hopf bifurcation with additive noise,

dx = ��� + �r2 + �r4�x − ��0 + �1r2�y�dt + �1d	1�t� ,

dy = ���0 + �1r2�x + �� + �r2 + �r4�y�dt + �2d	2�t� ,

r2 = x2 + y2, �2�

where 	1 and 	2 are independent standard Brownian motions
�SBMs�. This model captures the generic behavior of excit-
able systems near a Hopf point �=0. For any specific physi-
cal or biological model involving two variables, explicit ana-
lytical expressions of the parameters that appear in this
normal form can be derived as functions of realistic model
parameters for that particular system �18,19�.

In the absence of noise, all periodic solutions of this
model that bifurcate from the Hopf point are circles that are
centered at the origin. The parameters �, �, and � determine
the dynamics of the amplitude, with � and � governing the*Corresponding author: Email address: rachel@math.ubc.ca
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bifurcation structure away from the Hopf point, while the
parameters �0 and �1 govern the phase dynamics. In particu-
lar, the sign of �1 determines whether the angular frequency
is increased or decreased when the amplitude of the oscilla-
tion increases.

We present explicit analytical results in the context where
the system parameters approach the bifurcation point so that
�� � 
1. This is a noise-sensitive regime, well known from
computations that exhibit CR �16,17�. We begin with �2� for
��0 and ��0, so that �=0 is a supercritical Hopf bifurca-
tion point in the absence of noise. That is, for �1=�2=0 the
oscillations decay over time for ��0, and oscillations with
amplitude r0 and phase �= ��0+�1r0

2�t are stable for �0.
The parameter �1 is an important link between the amplitude
and phase; different signs of �1 represent different model
types with different phase dynamics. In this paper we restrict
our attention to ��0, corresponding to a quiescent regime in
the absence of noise.

Figure 1 shows a time series with small additive white
noise, 0��1=�2=�
1 and �� � 
1. The variance of the am-
plitude of the slowly modulated oscillations increases with �
and as �� � →0, that is, approaching the Hopf point at �=0. A
strong peak in the power spectral density �PSD� indicates a
dominant frequency due to CR. This response is induced by
the noise since, without noise, the oscillations decay for
��0. There is also a slow phase variation �not apparent on
the graphs�. Through CR the system exhibits oscillations in
this regime, and the analysis reveals the dependence of the
phase and amplitude on both the noise level and the model
parameters, providing critical scaling relationships related to
resonance.

The key to our results is a stochastic multiple scales ex-
pansion which exploits the resonance phenomenon in order
to derive effective amplitude and phase equations. It is based
on the method of multiple scales, commonly used to derive
amplitude or evolution equations for deterministic systems in
parameter regimes near a bifurcation point �18,19�. The sto-
chastic nature of the model does not allow a standard appli-
cation of the multiple-scales expansion, so we use a modified
approach which incorporates Ito calculus and the properties

of the noise �20� into the multiscale approximation. Since the
deterministic and stochastic elements of the analysis are well
known by themselves, we do not discuss these elements in-
dividually but rather focus our discussion on the combination
of these approaches for deriving stochastic phase and ampli-
tude equations. Similar approaches have recently been used
to derive amplitude equations for the stochastic van der Pol-
Duffing �vdPD� equation with both additive �21,22� and mul-
tiplicative noise �21�, and for stochastic delay differential
equations near a critical delay corresponding to a Hopf bi-
furcation �23�.

Here we focus on the stochastic phase dynamics, deriving
analytical quantities such as moments for the amplitude and
phase, which illustrate the model dependency of the stochas-
tic phase behavior and the noise-amplification factor related
to the Hopf bifurcation. In addition these quantities compare
well with numerical simulations and provide complementary
quantitative insight into the stochastic resonance-type maxi-
mum in the numerically computed coherence measure � de-
fined in �1�. Computed coherence measures are commonly
used as indicators of CR, while the more desirable analytical
expressions for the stochastic phase dynamics, derived di-
rectly from the model, are rare.

II. ANALYSIS AND RESULTS

We derive a reduced system of stochastic equations for
the amplitude and phase of the oscillations described by �2�.
The derivation uses the method of multiple scales modified
appropriately for stochastic systems in which the standard
rules of calculus do not apply. The multiscale analysis ex-
ploits the fact that the system is near critical in the noise-
sensitive regime for �� � 
1 shown in Fig. 1. That is, the
parameters are close to the Hopf point so we can express
�=�2�2+O��4� with �
1 and �2=O�1��0 for ��0. For
deterministic models in this regime, it is well known that the
system varies on a slow time scale T=�2t, in addition to the
original time scale t. Then it is not unexpected that the sto-
chastic system shows a similar multiscale behavior, particu-
larly if the noise is not too large. Indeed, this behavior ap-

FIG. 1. The amplitude of co-
herent oscillations in �2� increases
as the control parameter �→0 and
as the noise intensity � increases,
while the frequency is concen-
trated at a single value. The left
column shows the time series for
x�t� for �1=�2=�. The right col-
umn shows the corresponding
PSD. For both �a� and �b�, the pa-
rameters in �2�, �=−0.2,�=
−0.2,�0=0.9,�1=0, are the
same. In �a� �=.01, �=−0.03
�solid line� and �=−0.003 �dashed
line�. In �b� �=−0.03, �=0.07
�solid line� and �=0.1 �dashed
line�. Recall �=�2�2, which mea-
sures distance from the Hopf
point.
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pears in simulations shown in Fig. 1, where there is a
variation of the amplitude which is slow relative to the t
scale. An important ingredient in analyzing these slow modu-
lations is the projection of the system onto the resonant
modes which oscillate on the fast time scale. In deterministic
systems this projection leads to amplitude equations on a
slow time scale, equivalent to an averaging which eliminates
�unphysical� secular terms which grow linearly in time �18�.
In the stochastic system the projection plays a similar role,
producing stochastic amplitude and phase equations with an
appropriate approximation for the noisy excursions on the
slow time scale �21,23�.

To express the behavior on multiple time scales, we allow
x�t ,T� and y�t ,T� to be functions of both time scales t and
T=�2t,

x = �A�T�cos��0t� − �B�T�sin��0t� ,

y = �A�T�sin��0t� + �B�T�cos��0t� . �3�

The multiscale form of the ansatz for x and y is identical to
that used in the leading order approximation for a determin-
istic system near a Hopf point �18�. The difference here is
that A and B must capture the stochastic behavior, with the
form �3� appropriate in situations where the noise is small
and does not dominate the dynamics. We look for stochastic
amplitude equations on the slow time scale for A�T� and
B�T� of the form

dA = �AdT + �A1d�11�T� + �A2d�12�T�

dB = �BdT + �B1d�21�T� + �B2d�22�T� , �4�

where �ij�T� are independent SBMs on the slow time scale T.
Once we have the equations for A and B, we can obtain

the stochastic amplitude R and phase � in terms of A and B,
using

x = �R�T�cos��0t + ��T�� ,

y = �R�T�sin��0t + ��T�� , �5�

R2 = A2 + B2, � = tan−1 B/A . �6�

The coefficients �A, �B, �Aj, �Bj are derived through the
multiscale analysis. This derivation stands in contrast to a
deterministic analysis where one uses a perturbation expan-
sion following the replacement of xt with xt+�2xT and simi-
larly for yt. In the general setting of stochastic nonlinear
dynamics this multiscale version of the chain rule cannot be
directly applied. Instead, we seek the equations for the slow
dynamics through the introduction of an appropriate ansatz
�4�, which is verified by the following derivation of the co-
efficients; if this ansatz is incorrect, the derivation will show
inconsistencies �21,23�.

The coefficients in �4� are found from equating expres-
sions for dx and dy obtained by two methods. First, using
Ito’s formula, which can be viewed as the stochastic version
of the chain rule, we relate �2� on the fast time scale to �4� on
the slow time scale through �3� and �6� to get

dx =
�x

�t
dt +

�x

�A
dA +

�x

�B
dB = − ��A�T��0sin �0t

+ B�T��0cos �0t�dt + � cos �0t��AdT + �A1d�11

+ �A2d�12� − � sin �0t��BdT + �B1d�21 + �B2d�22� ,

�7�

dy =
�y

�t
dt +

�y

�A
dA +

�y

�B
dB = ��A�T��0cos �0t

− B�T��0sin �0t�dt + � sin �0t��AdT + �A1d�11

+ �A2d�12� + � cos �0t��BdT + �B1d�21 + �B2d�22� .

�8�

Note that, in general, Ito’s formula would include terms con-
sisting of the second derivatives of x and y with respect to A
and B with coefficients involving �ij, but these terms vanish
due to the linear relationship between x and y with A and B
in �3�. Secondly, by direct substitution of �3� and �6� into the
original equations �2�, we get

dx = ��3��2 + �R2 + �2�R4��A cos �0t − B sin �0t�

− ���0 + �3�1R2��A sin �0t + B cos �0t��dt + �1d	1,

�9�

dy = ����0 + �3�1R2��A cos �0t − B sin �0t�

+ �3��2 + �R2 + �2�R4��A sin �0t + B cos �0t��dt

+ �2d	2. �10�

Now we set �7� and �8� equal to �9� and �10�, respectively.
The first steps in the calculation are shown in the Appendix:
collecting coefficients of like powers of �, the O��� terms
cancel, since �3� are solutions to the linearized system with A
and B treated as constants with respect to the original time
scale. When written in terms of this fast time scale t, the
leading order nonzero contribution to the drift terms is O��3�
and the leading order contributions to the noise terms have
coefficients �1, �2 in �A1� and �A2�. By considering these
terms together as the leading order nontrivial contributions,
we have implicitly assumed that � j ��. The ansatz �3� in the
form of the solution of the linearized noise-free system is
also implicitly based on this assumption, which is discussed
further below in the context of the validity of the multiscale
approximation.

Since the goal is to derive the coefficients in the stochastic
amplitude equations �4�, we rewrite the leading order terms
from �A1� and �A2� on the slow time scale T,

cos �0t��AdT + �A1d�11 + �A2d�12� − sin �0t��BdT + �B1d�21

+ �B2d�22� = �sin �0t�− �2B − �1R2A − �R2B�

+ cos �0t��2A − �1R2B + �R2A��dT +
�1

�
d	1 �11�

and
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sin �0t��AdT + �A1d�11 + �A2d�12� + cos �0t��BdT + �B1d�21

+ �B2d�22� = �sin �0t��2A − �1R2B + �R2A�

+ cos �0t��2B + �1R2A + �R2B��dT +
�2

�
d	2. �12�

These expressions involve oscillations �cos �0t and sin �0t�
on the fast time scale t, and coefficients involving A, B, �A,
and �B which depend on the slow time T. To separate the
slow time behavior, we project �11� and �12� onto the pri-
mary mode of oscillations with frequency �0 on the time
scale t. Combined with the multiscale assumptions which
treat functions of T as independent of t, this projection leaves
terms which depend on T only, thus yielding equations for
�A, �B, and �Aj, �Bj, j=1,2 in �4�. This projection is identi-
cal to the solvability condition used in normal form calcula-
tions �18,19� to eliminate secular terms, and has the form

�
0

2�/�0

�cos �0t,sin �0t� · �Eqs. �11�,�12��dt ,

�
0

2�/�0

�− sin �0t,cos �0t� · �Eqs. �11�,�12��dt . �13�

Under the multiscale assumption, those functions of the slow
time T in �13� are treated as constants in the integration.
Since the periodic behavior in the system �2� can be ex-
pressed in terms of trigonometric functions, the integrals in
�13� can be computed analytically. In other situations where
the periodic behavior is expressed in terms of more compli-
cated functions or a limit cycle, the projection has to be done
numerically. Nevertheless the procedure is similar in this
more general case, as shown, for example, in �24�. For sim-
plicity of presentation, we write the results of the projection
in terms of the drift and diffusion terms separately.

The drift terms are

�cos �0t − sin �0t

sin �0t cos �0t
���A

�B
�dT

= �cos �0t − sin �0t

sin �0t cos �0t
���2A + R2��A − �1B�

�2B + R2��B + �1A�
�dT .

�14�

We get �A and �B by using �13� and integrating over one
period of the oscillation of length 2� /�0 on the t time scale,

�
0

2�/�0

�cos �0t,sin �0t� · �Eq. �14��dt

Þ �A = �2A + R2��A − �1B� ,

�
0

2�/�0

�− sin �0t,cos �0t� · �Eq. �14��dt

Þ �B = �2B + R2��B + �1A� . �15�

We give some details here for the derivation of the diffu-
sion �noise� coefficients in �4�. Before applying the projec-
tion, we use the properties of white noise to express all of the

noise terms on the slow time scale T and to write d	 j in a
form that captures explicitly the contribution of the primary
oscillatory modes,

�d	1

d	2
� = �−1�cos �0td	A1�T� − sin �0td	B1�T�

sin �0td	A2�T� + cos �0td	B2�T�
� �16�

with 	Aj and 	Bj independent SBMs for j=1,2. Then the
noise terms in �11� and �12� are

��cos �0t − sin �0t

sin �0t cos �0t
���A1d�11 + �A2d�12

�B1d�21 + �B2d�22
�

=
1

�
��1„cos �0td	A1�T� − sin �0td	B1�T�…

�2„sin �0td	A2�T� + cos �0td	B2�T�…
� . �17�

To obtain �A1 ,�A2 ,�B1, and �B2, we again use the projec-
tion as in �15�; we project �17� onto the primary modes,

�
0

2�/�0

�cos �0t,sin �0t� · �Eq. 17�dt

Þ �A1d�11 + �A2d�12 =
�1

2�2d	A1 +
�2

2�2d	A2, �18�

�
0

2�/�0

�− sin �0t,cos �0t� · �Eq. 17�dt

Þ �B1d�21 + �B2d�22 =
�1

2�2d	B1 +
�2

2�2d	B2 �19�

The multiscale ansatz is also applied, treating functions of
the slow time T as independent of the fast time t. This yields

�A1d�11 + �A2d�12 = d�A/�2�2� ,

�B1d�21 + �B2d�22 = d�B/�2�2� , �20�

where d�m=�1d	m1+�2d	m2, m=A ,B. Identifying the appro-
priate relationships between the SBM’s, we let �11=	A1,
�12=	A2, �21=	B1, and �22=	B2, which yields

�A1 =
�1

2�2 , �A2 =
�2

2�2 , �B1 =
�1

2�2 , �B2 =
�2

2�2 .

�21�

Note that in the use of the projection above, we have treated
white noise on the T time scale as if it is independent of the
fast t scale; of course, since white noise contains fluctuations
on all time scales, this assumption is not true, in general.
Nevertheless, the application of the projection yields an ap-
propriate approximation for the noise in the amplitude equa-
tions. This reflects the fact that if one used a full Fourier-type
expansion for x and y �25�, then the amplitudes of the addi-
tional modes beyond those shown in �3� would decay expo-
nentially on the time scale t �23�. Treating the noise as inde-
pendent of the fast time scale reflects the decay of these
additional modes of oscillation on this scale.

The diffusion terms in the amplitude equations for the
stochastic vdPD equation have been derived in �21� using
Ito’s formula together with the projection method discussed
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above, while in �22� the root mean square of cos �0t and
sin �0t were used in an approximation of the effective diffu-
sion coefficient. In these studies the factor �−1 appears as an
amplification factor in the noise coefficients for reduced
equations on the slow time scale T, as in �21�.

From �6�, �4�, �15�, and �20� and using Ito’s formula
again, we then obtain the equations for the stochastic ampli-
tude and phase, as shown in the Appendix,

dR2 = �2R2��2 + �R2� + ��dT + R�cos � d�A + sin � d�B�/�2,

�22�

d� = R2�1dT + �cos � d�B − sin � d�A�/�2�2R� , �23�

where �= ��1
2+�2

2� / �2�4�. From �22� and �23�, we obtain the
differential equations for the expected values of R2 and �

d�E�R2�� = E�d�R2�� = �2�2E�R2� + 2�E�R4� + ��dT ,

�24�

d�E���� = E�d�� = E�R2��1dT . �25�

Using an asymptotic expansion for small �, we get the lead-
ing order steady state results for the moments by neglecting
E�R4� in �24� and �25�, which is a higher order correction as
shown in the Appendix. Then to leading order we have

E�R2� 	 −
�

2�2
, �26�

E��� 	 −
�

2�2
�1T + �0, �27�

omitting higher order corrections with coefficient �2 �see
Appendix�. Here �0 is a constant phase shift, which can be

set to zero. Below we discuss that this asymptotic expansion
is consistent with r2=�2R2=O�� j

2 /�2�, with � j /� small.
The expected phase E��� depends on the noise through

the term R2�1dT in �23�, giving the phase behavior shown in
Fig. 2. In the top row we compare the numerical and analyti-
cal results for the expected value for the frequency associ-
ated with the peak of the PSD; that is, it is the coherence
frequency induced by the resonance with the noise. The ana-
lytical results are obtained using �27�, while the numerical
results are obtained from the averaged PSD over a large
number �1200� of realizations of the original system �2�. Fig-
ure 2 shows a good agreement between simulations and
analysis for � /��1. For �1=0, the expected value of the
phase does not depend on the noise, while for �1 ���0, the
coherence frequency increases �decreases� with the noise.
The results are shown for symmetric noise ��1=�2=��, and a
similar behavior is observed for �1��2.

Figure 2 �bottom row� gives the numerically computed
coherence measure �. It is obtained using the averaged PSD
for �2�, using the shape of the frequency peak to compute �
in �1�. The graphs show roughly the same behavior for � for
vanishing, positive, and negative values of �1 which charac-
terizes the model type. For �1=�2=� near 0, � is small,
followed by a sharp increase to its maximum for values 0
���0.1 and decreasing � for �0.1.

While � gives a measure of the coherence, it does not
provide any details about the phase. For example, from � we
cannot conclude whether the average frequency is increasing
or decreasing with noise. The analytical results �22�–�27�
give a complete description of the stochastic behavior of the
amplitude and phase behavior, both in terms of the noise
level and the model parameters, providing a view beyond the
numerical results of �. For example, we get the quantitative
relationships for the dependence of the phase on �1 and � j as
well as explicit expressions for the amplification factors near

FIG. 2. The behavior of the
peak frequency from the PSD and
the numerically computed coher-
ence measure � are shown as
functions of the noise. For all fig-
ures, the control parameter is �=
−0.03, the noise level is �1=�2

=�, and the other parameters in
�2� are �=−0.2, �=−0.2, and �0

=0.9. Upper: peak frequency �p

of the PSD peak vs the noise in-
tensity for �1=0 in �a� �1=1.2 in
�c�, and �1=−0.5 in �e�. The solid
line gives the asymptotic results
�27� and the dotted line gives nu-
merical results. Lower: coherence
measure � vs �. The parameters in
�b�, �d�, and �f� match those in �a�,
�b�, and �c�, respectively.
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the Hopf point, which cannot be obtained by computing �.
The analytical result provides information about the co-

herence, similar to that given by the numerical calculation of
�, but this coherence information does not come from the
calculation of the same quantities that appear in the defini-
tion of �. In particular, the width of the PSD ���� cannot, in
general, be computed analytically using this multiscale ap-
proach. Rather, the coherence information from the analyti-
cal results follows from a consideration of the validity of the
approach. The multiscale analysis is valid for noise levels
that do not overwhelm the resonant oscillations. In order to
quantify this statement, the stochastic amplitude equation
�22� is written in terms of the amplitude r=�R from the
single mode approximation �3�, yielding

dr2 = �2r2��2 + �r2/�2� + �2��dT

+ r�cos � d�A + sin � d�B�/� . �28�

This rescaling shows that the noise coefficient in the equa-
tion for the unscaled amplitude is O�� j /�� since � /�
=O�� j /�� �20�, and it is this coefficient which indicates the
balance between the noise and the oscillations. While the
term r4 /�2 appears to be large, in fact, given the exponential
decay of the deterministic part and small noise, this term
does not dominate the dynamics for CR. Thus the quantita-
tive results give the asymptotic range for the coherence ef-
fect in terms of the parameters for the noise level � j and
proximity to criticality �. For � j /�=o�1� the noise does not
dominate the dynamics, allowing coherent oscillations whose
amplitude r increases with both increasing noise level � j and
decreasing distance � from the bifurcation point. For larger
values of � j /�1, the noise in �28� is large, altering the
dynamics qualitatively by introducing additional modes into
the oscillatory behavior, so that the single mode approxima-
tion �3� breaks down.

This validity regime for the asymptotic results can be re-
lated to the behavior of � by first noting that the amplitude r
is related to the numerator for the coherence measure � as

hp = O��r�� = O�� j/�� . �29�

For very small � j /�, �22� and �29� show that the resonant
oscillation is present with small power, so that � is small
using �29� in �1�. For increasing � j /��1 this amplitude is
increased so that � increases, with �3� still a valid approxi-
mation. For � j /�=O�1� or larger, �3� is less accurate since
the larger noise supports additional modes which then cannot
be neglected in the approximation �23�. Due to the contribu-
tions of these other modes, �x�t�−�R cos��0t+��� increases
as does the width of the PSD peak. That is, the variation of x
and y from �3� for � j /�=O�1� or larger is mirrored in the
denominator �� /�p of � but not in the numerator �29�.
Therefore the loss of coherence for � j /�=O�1� or larger is
reflected both in the breakdown of the approximation �3� and
the decrease of � which is computed numerically.

III. SUMMARY AND EXTENSIONS

A stochastic multiple-scales method yields analytical
quantities for the stochastic amplitude and phase for an os-

cillator exhibiting CR near a Hopf bifurcation. Explicit ex-
pressions show how the phase and amplitude dynamics de-
pend on the model, providing additional information beyond
numerically computed coherence measures. Phase variations
due to the noise level and model type are characterized by a
parameter �1 which captures the coupling between the phase
and amplitude. The phase behavior differs from the increased
coherence frequency typically observed in systems with a
threshold. The amplification of the oscillations is related to
the proximity to criticality measured by �.

This derivation of stochastic amplitude equations �4� has
been used in applications where autonomous stochastic reso-
nance appears due to noise sensitivity �see �23�, and refer-
ences therein�. A key component is the projection onto the
primary modes combined with the multiscale ansatz. While it
is true that the noise is white with all frequency components,
this projection selects out the components corresponding to
the resonant mode which do not decay exponentially over
long time scales. Then the primary mode dominates the dy-
namics through CR over a long time scale �4�, while the
other modes decay at a sufficiently fast rate to be of higher
order for �
�. Note that on the long time scale, the noise
has an additional factor of �−1, corresponding to the amplifi-
cation of the oscillations.

Extensions of the analysis are particularly valuable in
noise-sensitive systems where computations can be delicate
or expensive. Stochastic phase and amplitude equations were
derived for the relaxation oscillations of an elliptic burster in
�24�, and we mention two important problems related to �2�
for which we have preliminary results.

1. Transitions from steady state to large amplitude oscil-
lations in the context of subcritical bifurcations. This phe-
nomenon occurs when �0 and ��0 in �2�, so that there is
a stable bifurcation branch of oscillatory solutions with a
large amplitude. Small perturbations or oscillations decay to
zero in the absence of noise since small amplitude oscilla-
tions are unstable. However, larger perturbations trigger
jumps to the stable large amplitude oscillations. The prob-
ability or expected time of this transition is directly related to
the amplitude E�R�, derived from �23�–�27�. In Fig. 3 the
transition to a large amplitude is highly improbable for small
enough noise ��=.02� �bold line�, but it can occur for noise
levels which are increased by a factor of 2 �thinner line�, but
are still the same order of magnitude as in the case where the
transition does not occur. A similar phenomenon is observed
if � approaches the critical Hopf point.

FIG. 3. Time series for the subcritical case, taking �=0.2,
�=−0.2,�0=0.9, and �1=1.2 in �2�, with control parameter
�=−0.03. The noise levels are �=0.02 �bold line� and �=0.04 �thin
line�. Even though the noise levels for both are O��� � �=O��2�, the
variance of the amplitude for larger values of � is sufficiently large
to cause a transition to a state with O�1� oscillations.
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2. Interaction and competition between coupling and
noise in systems near critical. We consider numerically two
diffusively coupled oscillators of the form �2�, observing re-
sults in Fig. 4 which show an interplay between noise and
coupling in synchronization, suggesting future directions for
the study of stochastic effects on the amplitude and phase.
The �top� figure shows intermittency between periods of
phase locking and phase drifts for noise and coupling at the
same strength. In the middle graph the noise in one of the
oscillators is reduced, keeping all other parameters the same
as the top graph, and the synchronization appears to be
strengthened, even though the noise levels are asymmetric.
In the bottom graph, where the coupling is smaller than in
the top and middle graphs and the noise levels are asymmet-
ric, the signals look dissimilar in amplitude and phase. Pre-

liminary results indicate that in these parameter ranges it is
possible to use a similar multiscale analysis to derive the
coupled slowly varying stochastic phase and amplitude equa-
tions. Through CR the amplification of the noise depends on
�−1, and contributions from the coupling are similarly ampli-
fied. The goal of this future work is to be able to obtain
explicit parameteric results for the stochastic phase and am-
plitude in the coupled case, leading to effective definitions
which can be compared to commonly used numerical mea-
sures.

APPENDIX

The equation obtained by equating the expressions �7� and
�9� for dx is

�− �A�T��0sin �0t + B�T��0cos �0t�dt��dt + ��cos �0t��AdT + �A1d�11 + �A2d�12� − sin �0t��BdT + �B1d�21 + �B2d�22��

= 
− ��0�A sin �0t + B cos �0t� + �3�sin �0t�− �2B − �1R2A − �R2B� + cos �0t��2A − �1R2B + �R2A���dt + O��5� + �1d	1,

�A1�

and equating �8� and �10� for dy we get


�A�T��0cos �0t − B�T��0sin �0t�dt�� dt + ��sin �0t��AdT + �A1d�11 + �A2d�12� + cos �0t��BdT + �B1d�21 + �B2d�22��

= 
��0�A cos �0t − B sin �0t� + �3�sin �0t��2A − �1R2B + �R2A� + cos �0t��2B + �1R2A + �R2B���dt + O��5� + �2d	2.

�A2�

Clearly from the above equations, the drift coefficients for the dynamics on the fast scale �appearing with � dt� cancel. Note
that there are drift coefficients appearing with � dT, but these terms are O��3� on the t scale. Then the remaining terms in the
x equation on the fast time scale are

cos �0t��AdT + �A1d�11 + �A2d�12� − sin �0t��BdT + �B1d�21 + �B2d�22�

= �2�sin �0t�− �2B − �1R2A − �R2B� + cos �0t��2A − �1R2B + �R2A��dt +
�1

�
d	1, �A3�

FIG. 4. Time series for diffu-
sively coupled systems of the type
�2� when the control parameter
for each is �=−0.03 and the other
parameters are �=−0.2, �=
−0.2,�0=2, and �1=1, starting
with small initial conditions, illus-
trating different effects of the in-
teraction of noise and coupling.
Solid and dashed lines are for x�t�
in the first and second oscillators,
respectively. �a� and �b� the cou-
pling strength is d=0.05, while in
�a� the noise levels are identical
�1=0.05, �2=0.05 and in �b� the
noise level of the first oscillator is
reduced �1=0.01, �2=0.05. In �c�
the noise levels are the same as in
�b�, but the coupling is reduced,
d=0.001.
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and similarly for the y equation, dropping O��4� terms.
Following the projection onto the fast modes shown in

Sec. II, we are left with �15� and the system for the ampli-
tudes A and B,

�dA

dB
� = ��2A + ��A − �1B�R2

�2B + ��B + �1A�R2 �dT + ��
d	A1

d	A2

d	B1

d	B2

 ,

where � = ��1/2�2 �2/2�2 0 0

0 0 �1/2�2 �2/2�2 � . �A4�

Using Ito’s formula again, we write the system �A4� in
terms of R2 and � as

dR2 =
�R2

�A
dA +

�R2

�B
dB + �

m=A,B

�2R2

�m2

�m1
2 + �m2

2

2
dT

= �2R2��2 + �R2� +
�1

2 + �2
2

2�4 �dT

+
R

�2 �cos ���1d	A1 + �2d	A2�

+ sin ���1d	B1 + �2d	B2�� . �A5�

d� =
��

�A
dA +

��

�B
dB + �

m=A,B

�2�

�m2

�m1
2 + �m2

2

2
dT

= R2�1dT +
1

2�2R
�cos ���1d	B1 + �2d	B2�

− sin ���1d	A1 + �2d	A2�� . �A6�

With the substitution �20�, �A5�, and �A6� become the
stochastic amplitude and phase equations �22� and �23�. In
order to get explicit expressions for E�R2� and E��� we use
an asymptotic approximation for small �= ��1

2+�2
2� / �2�4� in

their equations �24� and �25�. We find that the leading order
steady state result for E�R2� is −� /2�2 by neglecting the
E�R4� terms in �24�, and here we show that these correction
terms are O��2�. In particular, using Ito’s formula, �A5� and
d�m=�1d	m1+�2d	m2 for m=A ,B,

dR4 = �4�R2 + 4�2R4 + 4�R6� +
2R3

�2 �cos � d�A + sin � d�B� ,

�A7�

E�dR4� = d�E�R4�� = �4�E�R2� + 4�2E�R4� + O�R6��dT .

Then the steady state for E�R4� can be obtained from �A7�

E�R4� = −
�E�R2�

�2
+ O�R6� , �A8�

neglecting terms that decay exponentially. Substituting �A8�
into �24�, and writing E�R2�=−� /2�2+�2V we get a differ-
ential equation in terms of V

dV = �2�2V +
�

�2
2�dT + O��� , �A9�

and solve it for V�e2�2�T+T0�−� /2�2
3, where T0 is the initial

time value which can be set to 0. Thus the higher order
corrections to E�R2� are all �2.
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